Urban Agriculture

Urban Agriculture

Urban agriculture, urban farming, or urban gardening is the practice of cultivating, processing and distributing food in or around urban areas. Urban agriculture can also involve animal husbandry, aquaculture, agroforestry, urban beekeeping, and horticulture. These activities occur in peri-urban areas as well, and peri-urban agriculture may have different characteristics.

Urban agriculture can reflect varying levels of economic and social development. It may be a social movement for sustainable communities, where organic growers, “foodies,” and “locavores” form social networks founded on a shared ethos of nature and community holism. These networks can evolve when receiving formal institutional support, becoming integrated into local town planning as a “transition town” movement for sustainable urban development. For others, food security, nutrition, and income generation are key motivations for the practice. In either case, more direct access to fresh vegetables, fruits, and meat products through urban agriculture can improve food security and food safety.


Resource and economic

The Urban Agriculture Network has defined urban agriculture as: An industry that produces, processes, and markets food, fuel, and other outputs, largely in response to the daily demand of consumers within a town, city, or metropolis, on many types of privately and publicly held land and water bodies found throughout intra-urban and peri-urban areas. Typically urban agriculture applies intensive production methods, frequently using and reusing natural resources and urban wastes, to yield a diverse array of land-, water-, and air-based fauna and flora contributing to the food security, health, livelihood, and environment of the individual, household, and community.

Globalization has removed the need and ability of a community’s agency in their food production. This results in an inability to address food injustice on a smaller, more manageable scale. This is especially true in cities. Today, most cities have lots of vacant land due to urban sprawl and home foreclosures. This land could be used to address food insecurity. One study of Cleveland shows that city could actually meet up to 100% of its fresh produce need. This would prevent up to $115 million in annual economic leakage. Using the rooftop space of New York City would also be able to provide roughly twice the amount of space necessary to supply New York City with its green vegetable yields. Space could be even better optimized through the usage of hydroponic or indoor factory production of food. Growing gardens within cities would also cut down on the amount of food waste. In order to fund these projects, it would require financial capital in the form of private enterprises or government funding.


The Council for Agricultural Science and Technology (CAST) defines urban agriculture to include aspects of environmental health, remediation, and recreation: Urban agriculture is a complex system encompassing a spectrum of interests, from a traditional core of activities associated with the production, processing, marketing, distribution, and consumption, to a multiplicity of other benefits and services that are less widely acknowledged and documented. These include recreation and leisure; economic vitality and business entrepreneurship, individual health and well-being; community health and well being; landscape beautification; and environmental restoration and remediation.

Modern planning and design initiatives are often more responsive to this model of urban agriculture because it fits within the current scope of sustainable design. The definition allows for a multitude of interpretations across cultures and time. Frequently it is tied to policy decisions to build sustainable cities.

Urban farms also provide unique opportunities for individuals, especially those living in cities, to get actively involved with ecological citizenship. By reconnecting with food production and nature, urban community gardening teaches individuals the skills necessary to participate in a democratic society. Decisions must be made on a group-level basis in order to run the farm. Most effective results are achieved when residents of a community are asked to take on more active roles in the farm.

Food security

Access to nutritious food, both economically and geographically, is another perspective in the effort to locate food and livestock production in cities. With the tremendous influx of world population to urban areas, the need for fresh and safe food is increased. The Community Food Security Coalition (CFSC) defines food security as: All persons in a community having access to culturally acceptable, nutritionally adequate food through local, non-emergency sources at all times.

Areas faced with food security issues have limited choices, often relying on highly processed fast food or convenience store foods that are high in calories and low in nutrients, which may lead to elevated rates of diet-related illnesses such as diabetes. These problems have brought about the concept of food justice which Alkon and Norgaard (2009; 289) explain is, “places access to healthy, affordable, culturally appropriate food in the contexts of institutional racism, racial formation, and racialized geographies…. Food justice serves as a theoretical and political bridge between scholarship and activism on sustainable agriculture, food insecurity, and environmental justice.” 



Urban and peri-urban agriculture (UPA) expands the economic base of the city through production, processing, packaging, and marketing of consumable products. This results in an increase in entrepreneurial activities and the creation of jobs, as well as reducing food costs and improving quality.


Urban agriculture can have a large impact on the social and emotional well-being of individuals. UA can have an overall positive impact on community health, which directly impacts individuals social and emotional well-being. Urban gardens are often places that facilitate positive social interaction, which also contributes to overall social and emotional well-being. Many gardens facilitate the improvement of social networks within the communities that they are located. For many neighborhoods, gardens provide a “symbolic focus,” which leads to increased neighborhood pride.

Energy efficiency

The current industrial agriculture system is accountable for high energy costs for the transportation of foodstuffs. According to a study by Rich Pirog, the associate director of the Leopold Center for Sustainable Agriculture at Iowa State University, the average conventional produce item travels 1,500 miles (2,400 km), using, if shipped by tractor-trailer, 1 US gallon (3.8 l; 0.83 imp gal) of fossil fuel per 100 pounds (45 kg). The energy used to transport food is decreased when urban agriculture can provide cities with locally grown food. Pirog found that traditional, non-local, food distribution system used 4 to 17 times more fuel and emitted 5 to 17 times more CO
2 than the local and regional transport.

Similarly, in a study by Marc Xuereb and Region of Waterloo Public Health, they estimated that switching to locally grown food could save transport-related emissions equivalent to nearly 50,000 metric tons of CO2, or the equivalent of taking 16,191 cars off the road.

Carbon footprint

As mentioned above, the energy-efficient nature of urban agriculture can reduce each city’s carbon footprint by reducing the amount of transport that occurs to deliver goods to the consumer.

Also, these areas can act as carbon sinks offsetting some of the carbon accumulation that is innate to urban areas, where pavement and buildings outnumber plants. Plants absorb atmospheric carbon dioxide (CO2) and release breathable oxygen (O2) through photosynthesis. The process of Carbon Sequestration can be further improved by combining other agriculture techniques to increase removal from the atmosphere and prevent the release of CO2 during harvest time. However, this process relies heavily on the types of plants selected and the methodology of farming. Specifically, choosing plants that do not lose their leaves and remain green all year can increase the farm’s ability to sequester carbon.

Reduction in ozone and particulate matter

The reduction in ozone and other particulate matter can benefit human health. Reducing these particulates and ozone gases could reduce mortality rates in urban areas along with increase the health of those living in cities. Just to give one example, in the article “Green roofs as a means of pollution abatement,” the author argues that a rooftop containing 2000 m² of uncut grass has the potential to remove up to 4000 kg of particulate matter. According to the article, only one square meter of green roof is needed to offset the annual particulate matter emissions of a car.

Soil decontamination

Vacant urban lots are often victim to illegal dumping of hazardous chemicals and other wastes. They are also liable to accumulate standing water and “grey water”, which can be dangerous to public health, especially left stagnant for long periods. The implementation of urban agriculture in these vacant lots can be a cost-effective method for removing these chemicals. In the process known as Phytoremediation, plants and the associated microorganisms are selected for their chemical ability to degrade, absorb, convert to an inert form, and remove toxins from the soil. Several chemicals can be targeted for removal including heavy metals (e.g. Mercury and lead) inorganic compounds (e.g. Arsenic and Uranium), and organic compounds (e.g. petroleum and chlorinated compounds like PBC’s).

Noise pollution

Large amounts of noise pollution not only lead to lower property values and high frustration, they can be damaging to human hearing and health. In the study “Noise exposure and public health,” they argue that exposure to continual noise is a public health problem. They cite examples of the detriment of continual noise on humans to include: “hearing impairment, hypertension and ischemic heart disease, annoyance, sleep disturbance, and decreased school performance.” Since most roofs or vacant lots consist of hard flat surfaces that reflect sound waves instead of absorbing them, adding plants that can absorb these waves has the potential to lead to a vast reduction in noise pollution.

Nutrition and quality of food

Daily intake of a variety of fruits and vegetables is linked to a decreased risk of chronic diseases including diabetes, heart disease, and cancer. Urban agriculture is associated with increased consumption of fruits and vegetables which decreases risk for disease and can be a cost-effective way to provide citizens with quality, fresh produce in urban settings.

Economy of scale

Using high-density urban farming, as for instance with vertical farms or stacked greenhouses, many environmental benefits can be achieved on a citywide scale that would be impossible otherwise. These systems do not only provide food, but also produce potable water from waste water, and can recycle organic waste back to energy and nutrients. At the same time, they can reduce food-related transportation to a minimum while providing fresh food for large communities in almost any climate.